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Results are presented of an experimental study of the onset of time-dependent flows in 
a sample of liquid gallium subjected to a horizontal temperature gradient. The primary 
control parameter is the Grashof number which is set by the temperature difference. 
However, we have also taken the novel approach of varying the Prandtl number 
in a systematic way using the applied mean temperature. This has uncovered some 
surprising new dynamical states. Furthermore, the interaction between competing 
oscillatory flows has produced interesting dynamical behaviour including secondary 
Hopf bifurcations where both the frequency and amplitude grow from zero as the 
critical point is passed. 

1. Introduction 
The demand for homogeneous pure semiconductor crystals for use in high-density 

integrated electronic chips has meant that more refined crystal growing processes 
are required. One way of achieving this is to improve the current processes by 
obtaining a deeper understanding of some fundamentals of present techniques so 
that improvements can be found. The current state of knowledge of the many 
factors which determine crystal homogeneity is reviewed in articles by Brown (1989), 
Langlois (1985), and Pimputkar & Ostrach (1981). One of the important effects is 
that of convective fluid motion in the crystal melt. Thus, in the present study, we will 
focus on those aspects of the underlying fluid motion which will have an effect on 
the crystal growing process. 

At certain values of the control parameters, the steady convecting fluid flow 
can develop an oscillation. These oscillations were first observed experimentally by 
Muller & Wiehelm (1964) and by Hurle (1966). I t  has been demonstrated that the 
time-dependent flow induces thermal oscillations and they in turn are one of the 
main reasons for the occurrence of layered variations of impurities in the crystal, 
known as striations. Specifically, numerical investigations by Crochet, Geyling & van 
Schaftingen ( 1983, 1987) and experimental observations by Thevenard et al. (1991) 
show that small temperature variations cause the crystal to solidify and remelt at the 
interface, thus creating layers of impurities. 

The material we use in our experiment is gallium which is a liquid metal above 
293°C and hence the transport of heat mainly takes place by conduction. Convective 
flows are also found and the main physical driving mechanism of these is buoyancy, 
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induced by temperature gradients along the melt. The experiment is a model of 
the horizontal Bridgman technique where a temperature gradient exists between the 
hot melt and the cold crystal. Buoyancy forces can lead to steady convective flows, 
which separate into circulating eddies. Under other circumstances they can produce 
time-dependent dynamics. However, the precise mechanisms which give rise to the 
thermal oscillations are poorly understood and it is these that will be the focus of 
attention of the present study. 

Convective flow of a liquid metal contained in a rectangular enclosure is governed 
by four dimensionless parameters, namely two aspect ratios, the Grashof number and 
the Prandtl number. The two aspect ratios describe the geometry of the set-up: one 
is the ratio of the length of the container in the direction of the temperature gradient 
to the height A,  = L / H ,  and the second is the ratio of the width to the height, 
A,  = W / H .  The Grashof number is the non-dimensional group which corresponds 
to the applied temperature gradient, and it is defined as Gr = (gaATH3)/(v2A,) ,  
where CI is the volumeric expansion coefficient, v is the kinematic viscosity of the fluid, 
g is the acceleration due to gravity, and AT is the applied temperature difference. 
The temperature, length, and time scales of the problem are ATIA,, H ,  and H 2 / v  
respectively. The Prandtl number relates the momentum diffusivity to the thermal 
diffusivity of the material, and is defined as Pr = V / K ,  where the thermal diffusivity is 
given by K .  

Pioneering work in experimental investigations of the flow dynamics of liquid gal- 
lium in a rectangular enclosure of moderate aspect ratio was carried out by Hurle 
(1966), and by Hurle, Jakeman & Johnson (1974). Details of a more recent experi- 
mental and numerical study are given in Braunsfurth et at. (1995), which also contains 
a review of work on steady flows in the present problem. In summary, the types of 
fluid flows found are the following. At small temperature differences, the convective 
flow is steady. However, when the temperature difference is increased above a critical 
value, the flow was found by Hurle et al. (1974) to oscillate. Their investigation then 
concentrated on the dependence of the critical temperature difference on the aspect 
ratios of the system and, especially, on the strength of an applied transverse magnetic 
field. Their findings indicate that the critical temperature difference for the onset of 
oscillation decreases as the aspect ratios A,  and A ,  increase. In addition, the critical 
temperature difference for the onset of oscillatory flow was found to be proportional 
to the square of the applied transverse magnetic field. The dependence of frequency 
of the oscillations on the aspect ratio was also investigated. The period of oscillation 
was found to be proportional to the length of the boat. It was noted that one of 
two different frequencies could appear at the onset depending on the depth of the 
gallium. However, this feature was not investigated in detail. 

McKell et al. (1990) later studied a particular feature of the time-dependent dynam- 
ics. Their investigation concentrated on the parameter range close to the point where 
a line of secondary Hopf bifurcations giving rise to quasi-periodic motion intersects 
a line of period-doubling bifurcations. The point of intersection of the two lines of 
bifurcation points is a two-control-parameter problem and is called a codimension-2 
point. (See e.g. Guckenheimer & Holmes 1983, Mullin 1993 and Wiggins 1990). 
McKell et al. (1990) were able to show the existence of a codimension-2 point and 
the emergence of chaos via torus doubling. 

Other studies of convection in liquid metals were performed by Pratte & Hart 
(1990) and Hart & Pratte (1990), who investigated oscillatory convection in samples of 
mercury. The experimental set-up used by them consists of three separate rectangular 
chambers filled with mercury, of aspect ratios 1 x 4 ~ 1 ,  1 x 4 ~ 2 ,  and 1 x 8 ~ 8 ,  where 
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the aspect ratios are defined as heightxlengthxwidth. The critical Grashof numbers 
for the onset of oscillation were found to be Gr = 22 200 for the 1 x 8 x 8  container, 
Gr = 39000 for the 1 x 4 ~ 2  container, and Gr = 135000 for the 1 x 4 ~ 1  container. 
The non-dimensional frequency ( f N )  of the oscillations based on the time scale of 
H 2 / v  was found to be 14.3 and 43.8 for the 1 x 4 ~ 2  and the 1 x 4 ~ 1  containers 
respectively. At higher Grashof numbers, further oscillatory transitions were found 
to lead to frequency-locked states and eventually to chaos. It  was noted by Pratte & 
Hart (1990) that in the case of the 1 x 8 ~ 8  chamber the frequency of the oscillation 
just after onset was sensitively dependent on the rate at which the Grashof number 
was changed, and two different frequencies of oscillation were found at the same 
Grashof number. 

Numerical studies of convection in liquid metal flows can be sub-divided into 
three categories, namely two- or three-dimensional numerical integrations of the 
equations of motion, and stability calculations. In general, the results of different 
two-dimensional numerical studies are in accord with each other. This is also true for 
the three-dimensional numerical studies, and those of the stability analyses. However, 
when the results of these three different approaches are compared, then there are 
both quantitative and qualitative differences. 

The results from the three types of studies can be summarized as follows. A large 
number of two-dimensional numerical studies have been carried out at an aspect 
ratio of A,. = 4, and they can be found in the collection of numerical benchmarks 
compiled by Roux (1990). These include work by Behnia & Davies (1990), Behnia 
et al. (1990), Ben Hadid & Roux (1990), Garrec & Magnaud (1990), and Le Quirk 
(1990). Other numerical results for a container of aspect ratio 4 include the studies by 
Crespo del Arco, Pulicani & Randriamampianina (1989), Roux, Ben Hadid & Laure 
(1989), Pulicani et al. (1990), and Okada & Ozoe (1993). A pertinent example of these 
studies is provided by Le Qukre (1  990) who found a critical Grashof number for a 
Hopf bifurcation of Gr,, = 27875, and a non-dimensional frequency of oscillation 
j” = 17.3. Ben Hadid & Roux (1990) found Gr,, = 30000 and , f ~ .  = 20. In both cases, 
the steady flow before the onset of oscillation consists of three co-rotating convection 
cells, and the oscillation is found to be a pulsation of these cells symmetrically about 
the centre point of the container. 

A small number of three-dimensional numerical studies have also been performed. 
The first reported studies by Chabbard & Lalanne (1990), Extremet et al. (1990), 
and Gervasio et al. (1990) appear to be inaccurate due to insufficient grid resolution, 
and have been superseded by more accurate calculations by Afrid & Zebib (1990), 
and by Henry & Buffat (1990). Both of the latter studies consider the mathematical 
abstraction of a fluid of Prandtl number zero where heat transport is due to conduction 
alone with no contribution from the circulating fluid. Afrid & Zebib (1990) found 
the onset of oscillations for a container with aspect ratios A ,  = 2 and A ,  = 4 to be 
Gr,. = 30000 at a frequency of f N  = 36.6. For a container of aspect ratio A, = 1, 
the values were Gr,, = 125000 and fN = 39. In contrast to the two-dimensional 
results, Afrid & Zebib (1990) have found that the flow remains in the form of a single 
convection cell at all times. The work by Henry & Buffat (1990) on the other hand 
indicates that three cells are present. During a cycle of the oscillation, the central 
convection cell precesses out of the plane about the centre point of the cavity, and 
hence the oscillatory flow is three-dimensional in nature. Thus this type of motion 
cannot take place in the two-dimensional calculations. 

We now turn to the stability calculations by Winters (1988, 1990), Winters & Jack 
(1989), and by A. C. Skeldon (private communication). The approach chosen by 
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these authors is different from that used in the studies discussed above, in that it 
uses a technique which is halfway between numerical and analytical methods. First, 
a finite element method is used to compute a steady base flow for the particular 
set of boundary conditions. Then, linear stability analysis is performed, allowing an 
estimate to be made of the critical parameter values for the onset of oscillations. The 
studies were focused on a container of aspect ratio of A = 4 with a two-dimensional 
flow field. Winters (1988) found the onset of oscillations at Gr, = 38085 with a 
frequency of f N  = 80.5. The oscillation is found to be symmetric about the centre 
point of the container. These calculations have recently been extended by Skeldon to 
include the influence of the Prandtl number on the critical Grashof number for the 
onset of oscillations. In her study, variations in the material properties of the fluid 
with the local temperature were taken into account. The critical Grashof number is 
seen to increase in a smooth and monotonic fashion from Gr, = 37000 at Prandtl 
number Pr = 0.0155 to Gr, = 99 700 at  Prandtl number Pr = 0.0215. 

In summary, the experimental findings and the different numerical results disagree 
qualitatively and quantitatively in predicting the onset of oscillations. A variety of 
different frequencies of oscillation are found, and the onset of oscillation is found 
to lie in the range Gr = 22 200 to Gr = 135 000, with a sensitive dependence on the 
aspect ratios and on the Prandtl number. However, the details of this dependence 
of the critical Grashof number on the other parameters of the system have not been 
investigated systematically other than in the preliminary work of Skeldon. Finally, the 
dependence on the control parameters of the nature and frequency of the oscillation 
is not well established. 

Here we present results from a carefully controlled experimental study of the 
onset of oscillation in a sample of liquid gallium. We use a novel approach in 
treating the Prandtl number as a variable parameter whose value is adjusted using 
the dependence of the material properties on the mean temperature of the fluid. Thus 
the onset of oscillation is investigated in the plane in parameter space spanned by 
the Grashof number and the Prandtl number. The findings are analysed using the 
tools provided by bifurcation and dynamical systems theory, in order to provide a 
base of observations and understanding of the observed phenomena in terms of the 
experimental parameters. 

2. Experimental set-up and properties of gallium 
The experimental set-up consists of a rectangular ceramic channel which holds the 

liquid gallium between two conducting end plates. The channel is precision machined 
from pyrophyllite, which is then fired to create a hardened ceramic channel, with a 
thermal conductivity of 1.6 W rn-l K-'. The channel has an inner width of 12.82 mm 
k0.05 mm, and a length of 38.7 mm kO.1 mm. As shown schematically in figure 1, the 
channel is covered with a ceramic lid machined from the ceramic MACOR, so that the 
height of the channel is 9.7 mm +O.l mm, which gives an aspect ratio length/height of 
A, = 4.0. The thermal conductivity of MACOR is 1.48 W m-l K-l, and matches that 
of pyrophyllite to within 8%. The thermal conductivity of both ceramics is between 
18 and 29 times lower than that of gallium in the range of temperatures encountered 
in the experiment, and the walls and the lid are at minimum 5 mm thick. Hence 
the sidewalls provide a good approximation to rigid adiabatic boundary conditions. 
Clearly the lid cannot cover the whole of the gallium surface if measurements are to 
be made. Thus a thin slot is left in the lid to allow a thermocouple to be inserted 
into the melt at different selected positions. The slot is in the centre of the lid, and 
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FIGURE 1. Schematic view of the experimental apparatus. The ceramic boat containing the gallium 
is sandwiched between temperature-controlled metal walls. The entire apparatus is mounted inside 
a temperature-controlled environment. Measurements are made with a thin thermocouple. 

runs along the length of it, as can be seen in figure 1. The width of the slot is 
0.5 mm k0.l mm, which amounts to 4% of the width of the container. It should be 
noted that the lid appears to have little quantitative effect on the results. In fact, 
experiments performed without a lid showed only marginal differences to those with 
a lid. We believe this occurs because the gallium quickly forms an oxide layer which 
acts as a rigid boundary and is also a reasonable insulator. 

The ends of the channel are defined by 1 mm thick molybdenum walls, through 
which the heating and cooling is applied. Molybdenum is chosen because it is one 
of the few metals which is reasonably resistant to attack from the liquid gallium. 
Circular pieces of molybdenum sheet are mounted in copper boxes, through which 
temperature-controlled fluid is circulated. The fluid used is silicone oil which has 
a viscosity 10 cS at room temperature, and it is kept at a constant temperature by 
Haake G8-G heating/cooling temperature controllers. The copper boxes contain 0.7 1 
of liquid which provides good thermal inertia, and so act as a low-pass thermal filter 
to damp out external temperature fluctuations. The fluid is injected into the boxes 
at speeds of the order of one litre per minute, ensuring turbulent mixing of the fluid 
inside the box, and hence providing a uniform temperature at the molybdenum wall. 
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In order to isolate the experiment from thermal fluctuations of the surroundings, the 
copper boxes are lagged in Styrofoam, and the ceramic boat with the gallium is lagged 
with approximately 2 cm of cotton wool. In addition, the whole set-up is enclosed in 
a temperature-controlled air cabinet. Thermocouple probes inside the copper boxes 
were used to perform control measurements of the temperature of the fluid, which 
was found to be constant to +0.OS0C over the period of days, at total temperature 
differences of up to 100°C. This indicates a level of noise of O( w3). 

Measurements of the temperatures at different points in the gallium were made 
using a sheathed K-type (chromel-alumel) thermocouple. The outer diameter of the 
thermocouple sheath is 250 pm, ensuring that only a minimal disturbance is present in 
the flow. Furthermore, the thermocouple junction has a volume of (250 ~ m ) ~ ,  giving 
a close approximation to a point measurement. The slew rate of the thermocouple 
allows temperature changes of up to 3 Kms-' to be measured accurately. This is 
an important feature when studying time-dependent phenomena. The signal from 
the thermocouple is processed by an amplifier, which also provides an electronic 
cold-junction compensation for the thermocouple signal. Both the amplifier and 
cold-junction reference are enclosed in an isothermal box inside the air cabinet, and 
the stability of the amplifiers achieved in this way resulted in fluctuations in the signal 
of less than 0.01"C. 

The signal from the thermocouple amplifiers is conditioned by a level shifter and 
amplifier, and is finally sampled using a 12-bit analog to digital converter which 
enables the data to be stored and analysed using a personal computer. This computer 
is also used to control the settings of the external temperature controllers which 
provide the temperature gradient across the sample of gallium. 

The bifurcation set depends on the aspect ratios of the system but these parameters 
can only be varied in discrete steps. However, the Grashof and Prandtl numbers can 
be controlled readily and virtually continuously by altering the temperature difference 
and the mean temperature applied to the gallium. The Grashof number depends on 
the volumetric expansion coefficient, the viscosity, and the density of the fluid, along 
with the applied temperature gradient. The Prandtl number depends solely on the 
viscosity, thermal conductivity, and specific heat. The material properties in turn vary 
with the local temperature, thus introducing an implicit temperature dependence to 
the Grashof and Prandtl numbers. 

The variation of the governing parameters with temperature has far reaching 
consequences. On the one hand, the parameters are no longer constant over the 
whole system. It is hence, in principle, possible to have different dynamics in different 
parts of the container, such as in the case studied by Kobine, Mullin & Price (1995) 
of a Taylor-Couette problem with a tapered inner cylinder. However, we have 
been unable to find evidence for such local dynamics in our system. The approach 
that we have taken treats the parameters as constants over the flow region, but 
allows a dependence on the mean temperature in the fluid. Numerical calculations 
by A. C. Skeldon (private communication) suggest that this approach is a valid 
one, since all the flow dynamics calculated to date show that the spatial variation 
of the parameters has only a minimal effect on the behaviour. A more important 
consequence of the temperature dependence of the parameters is the fact that the 
parameter space is increased by an extra dimension. All of the previous experimental 
and numerical investigations have treated the Prandtl number as a constant. As we 
will see, many of the dynamics observed in the present study can only be understood 
if we consider the dynamics as a function of both the Grashof number and the 
Prandtl number. 
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The Prandtl number can be written as a function of the mean temperature T, and 
its functional form is shown in figure 2. The Grashof number becomes a function 
of the mean temperature T and the temperature difference AT between the ends. 
The following expressions were derived using the tabulated values of the various 
properties of gallium found in a range of different reference works (see Hampel 1954; 
Lange 1967; Filyand & Semenova 1968; Hultgren er al. 1973; Touloukian et al. 1979; 
Kaye & Laby 1982; Weast et al. 1983, 1993; ASM 1990; Brandes & Brook 1992; 
Iida & Guthrie 1993): 

6.135 x 10-3 e(4XI!T) 
Pr = 

1 + 4.67 x 10-3(T- T,?,,,ir) ' 

where Tmelt is the melting point of gallium, 293°C. 
It should be noted that the above expressions for the Grashof number and the 

Prandtl number are subject to large systematic uncertainties arising from errors in the 
values of the material properties of gallium, especially so in the case of the Prandtl 
number. The absolute value of the Prandtl number is only known to within 0.006, or 
to within 30% of its value of 0.02 at typical temperatures present in the experiment. 
Owing to this systematic uncertainty, it is very difficult to obtain good absolute 
comparison between calculation and experiment. However, the relative uncertainty is 
much less, and is on the order of 1%. 

3. Results 
We find four distinct types of temporal behaviour in different regions of Grashof- 

Prandtl number space, each of which corresponds to a different mode of the flow. We 
present the observations made in parameter ranges where different time-dependent 
modes interact with each other. These include the appearance of a secondary 
modulation of the oscillations, which is discussed in detail. It is found that the 
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Prandtl number 
FIGURE 3. The bifurcation set of observed dynamics in Gr-Pr space. C denotes steady flow and the 
regions labelled O1, 0 2 ,  Q3, a4 indicate the parameter ranges over which the respective oscillatory 
states are observed. The lines labelled AB and CD mark the parameter limits of the experiment. 

amplitude and the period of the secondary oscillation is strongly dependent on the 
control parameters, and evidence for a degenerate Hopf bifurcation is presented. 

The aspect ratios of the experimental sample of gallium were A,  = 1.3 and A,  = 4.0. 
The main results were taken with a single thermocouple probe held at a height where 
the sensitive tip just pierced the top surface of the gallium. The probe was found to 
have no significant effect on the flow at this height, and thus it was ensured that only 
a minimal disturbance to the flow would be present. It was found, however, that the 
signal obtained from the flow at these positions is very weak, and, as we will see in 
the following, often has to be amplified to such a degree that the fluctuations and the 
noise in the experiment become apparent. The probe was placed at 10.0 mm from 
the cold end, which corresponds to a non-dimensional distance based on the height 
of the gallium of 1.03, measured from the cold end. A second probe was also used on 
occasions and was located at a distance of 5 mm from the hot end. All oscillations 
detected in the signal from the first probe were also found at the second one and vice 
versa. In addition there was a fixed phase relationship between the signals indicating 
that all the oscillations were of a global nature, i.e. the system oscillates as a whole. 

An overview of the observed bifurcation set in Gr-Pr space is presented in fig- 
ure 3.  The different shaded regions correspond to the qualitatively distinct dynamical 
behaviour of the system bounded by the loci of measured bifurcation points. The 
curves AB and CD denote the upper limit of the range of achievable parameters with 
the present experimental set-up. It is limited at the high Prandtl number end by the 
solidification point of the gallium, and the largest Grashof number and the lower 
limit on the Prandtl number are determined by the maximum temperatures which can 
be achieved using the temperature controllers. The system was found to be symmetric 
with respect to a reversal of the temperature gradient, and hence negative Grashof 
numbers were not included in the graph. 
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The flow is steady in the region labelled Z below the loci of critical points in 
figure 3. Furthermore, this steady flow comprises three co-rotating cells and is the 
same primary solution in the whole of the area C, and no evidence for sudden 
transitions or hysteresis effects was found in the steady-state temperature. In the 
mathematical abstraction of an infinite layer, we would expect a bifurcation from a 
parallel flow to stationary steady rolls to take place in the area C. However, since 
the experimental container is finite and of a relatively small aspect ratio A ,  = 4, 
this transition is no longer a bifurcation, but a smooth development of the three co- 
rotating cells. A more detailed discussion of the steady flow structure and comparison 
with numerical results is given in Braunsfurth el a/ .  (1995). 

All the experimental points shown in figure 3 thus lie on the limit of stability of the 
same steady flow solution. They were obtained in the following way. For each point, 
an estimate of the range in which the bifurcation takes place is found by determining 
a point at which the system oscillates and one at which the flow is steady. The range 
thus determined is then divided into steps of 0.7"C in the temperature difference and 
0.35"C in the mean temperature. At each of these steps. it was observed if oscillations 
of the temperature would grow or decay to below the noise level over a period of 
30 minutes. Repeated measurements of the bifurcation points were found to give 
identical results, and the loci of the transitions were found to be independent of the 
history of the system. 

In addition to these measurements, sets of more detailed samples were taken along 
the lines marked EF, GH, and so on to OP in figure 3, in order to establish whether the 
oscillations arise through a Hopf bifurcation. Along each of the IInes, sets of samples 
were taken at temperatures which correspond to uniform steps along the line. The 
temperatures were set under computer control and each of the steps corresponds to a 
change in the mean temperature of 0.17"C i0.04 C and in the temperature difference 
of 0.34"C kO.O8',C. At each step. a power spectrum of the measured time series was 
formed, and the power of the most significant peak in the spectrum corresponding to 
the frequency of the oscillation was determined. Thus it was possible to investigate 
how the power of the signal behaved close to the bifurcation point. In the case of a 
supercritical Hopf bifurcation, a linear measure of  the amplitude of oscillation should 
scale as the square root of the parameter close t o  the bifurcation point, as discussed 
for example by Berge, Pomeau & Vidal (1984). The power in the oscillation is a 
squared measure of the flow, and one would hence expect a linear increase in the 
power as a function o f  the parameter near the the critical point. Also, the frequency of 
the oscillation which arises at a Hopf bifurcation should be constant for supercritical 
values of the parameter. 

The behaviour of the power close to the bifurcation point for the onset of oscillation 
of the four different oscillations is shown in figure 4. In order to normalize the graphs 
so that they can be presented in a single plot, the Grashof number in the scans 
across the bifurcation was rescaled in terms of the critical value at the bifurcation 
point. Since the absolute values of the power of the oscillation depends on the 
particular settings in the amplifying electronics, and also on the signal strength at 
the measurement position in the melt, power measurements only have meaning when 
seen relative to other measurements from the same scan. Thus power was rescaled 
to collapse the straight lines from each scan onto a single line. It can be seen in 
the plot that the power of oscillation is zero to within the experimental accuracy 
for all values of the parameter below the bifurcation point. After the bifurcation 
point, the power is seen to increase linearly with the parameter and the frequency of 
oscillation was found to be constant to within 3% over the range of Grashof numbers 
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FIGURE 4. Non-dimensionalized power of the respective oscillations 

close to the bifurcation points. 

displayed in figure 4. Both of these observations are consistent with a supercritical 
Hopf bifurcation. 

The line of critical points in Grashof-Prandtl number space does not indicate a 
smooth dependence on the control parameters, but displays three significant 'bulges' 
around Prandtl numbers of 0.018 to 0.019. These are separated by two cusps, labelled 
a and f i  in figure 3. The system was found to evolve into four distinct types of 
oscillations, labelled R,, Q, !&, and &. In each case, the frequency of oscillation 
was determined using a power spectrum of a sample time series. We find that the 
'bulges' in the line of critical points correspond to the regions where the oscillations 
a,, Q2, and QL3 are found, and that the cusps CI and f i  are at the points where 
the different solutions meet. These observations can be understood in terms of four 
different modes R1 to Q4 which become unstable in the different regions of parameter 
space. The nature of each of these four modes will now be described, followed by a 
discussion of the modal interaction which takes place at the cusps a and p. 

The area labelled R1 in figure 3 is a region where the system develops an oscillation 
with period of 6.62 s, or a frequency of 0.151 Hz, which can be non-dimensionalized 
with the viscous diffusion time scale H 2 / v  to give f N  = 52.1. A sample of this 
oscillation was taken at a Grashof number of 46900 and a Prandtl number of 0.0184 
and its autocorrelation is given in figure 5(a). The x-axis of the graph gives the delay 
time, and the value of the autocorrelation function is plotted on the y-axis. The 
maxima in the autocorrelation function occur at a delay time which corresponds to 
an integer shift of cycles of the oscillation, and hence it can also be used to obtain 
an estimate of the period of the oscillation. The autocorrelation function in this 
case indicates a simply periodic flow, but it also shows a drop of amplitude of the 
function to 60% of the full range. This drop indicates the presence of an uncorrelated 
component in the signal, and is due to a combination of instrumentation noise and 
thermal fluctuations. The amplitude of the oscillation detected in the signal is 0.02"C 
which is of thus of the same order of magnitude as the thermal fluctuations introduced 
in the control of the boundary conditions. 

In figure 5(b) we present the autocorrelation function for the second oscillatory 
state 0 2 ,  at a Grashof number of 54 100 and a Prandtl number of 0.0186. A typical 
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FIGURE 5. Autocorrelation function for the oscillations. ( u )  Q , ;  ( h )  0 2 ;  (c) Q j ;  (d )  Q I .  

amplitude of this oscillation was found to be 0.08"C. The autocorrelation function 
does not show a significant decay, which indicates that the motion is singly periodic, 
with only a small component of instrumentation noise present. The area marked 
in figure 3 indicates the parameter range over which this oscillation is found. The 
frequency of oscillation is 0.0623 Hz, giving a period of 16.1 s and a non-dimensional 
frequency of jv = 21.1. 

In the region in figure 3 marked 0 3 ,  the oscillation has a period of 5.13 s, or a 
frequency of 0.195 Hz, and a non-dimensional frequency of f N  = 65.7 with a typical 
amplitude of oscillation of 0.06"C. The autocorrelation function of this oscillation 
is shown in figure 5(c) .  It was taken at a Grashof number of 83500 and a Prandtl 
number of 0.0192. As before, the autocorrelation function can be used to confirm the 
period of the oscillation, and it again indicates a simple periodic thermal oscillation 
in the flow. 

Finally, the area marked Q4 denotes a parameter range where the flow oscillates with 
a frequency of 0.121 Hz, corresponding to a period of 8.26 s and a non-dimensional 
frequency of f v  = 39.2, and an amplitude of 0.09"C. In figure 5 ( d ) ,  we present the 
autocorrelation function for this oscillation, sampled at a Grashof number of 94 600 
and a Prandtl number of 0.0203. 

We now consider the events which take place when a change in the parameter gives 
rise to a transition between oscillatory states. In order to investigate this, detailed 
sets of samples were taken along the parameter path ST indicated in figure 3,  in the 
following way. Starting at S a set of 20000 samples was taken over a period of 67 
minutes. The temperature of the cold end was adjusted to a new value, and the system 
was allowed 30 minutes to settle down from the change of the parameters. Then the 
next set of samples was taken, and so on. The line ST was hence divided into 30 
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FIGURE 6. Plot of frequency versus Grashof number for the exchange between the !2, and 0 2  

oscillatory states showing hysteresis. 

steps, each corresponding to a change in the mean temperature of 0.17"C +O.O4"C 
and in the temperature difference of 0.34"C +O.OS°C. With each of these steps, both 
the Grashof number and the Prandtl number change. However, since the changes are 
predominantly in the direction of Grashof number, we choose to display the results 
as a function of Grashof number, and take it as understood that the Prandtl number 
changes in accord with the line ST in figure 3. Once such a scan was complete in 
one direction in parameter space, it was repeated in the opposite direction, in order 
to investigate the possibility of hysteresis. The temperatures were set under computer 
control, in order to ensure accurate and repeatable measurements. 

A detailed view of the transition process between the solutions Q1 and Q2 is shown 
in figure 6. If the Grashof number is such that the main oscillation is R1 and 
the Grashof number is then increased, the Q1 oscillation remains up to a Grashof 
number of 51000. If the Grashof number is then increased by a single step then 
the system makes a catastrophic transition to 0 2 .  On the other hand, if the initial 
state of the system is in the region with oscillation Q2, the Grashof number has to 
be reduced to below 49000 before the system jumps back to R1. This hysteresis cycle 
is indicated by the arrows in figure 6. The power spectra of the time series sampled 
just before and after the transition from Q2 to Ql are shown in figures 7(a) and 7(b) 
respectively. It should be noted that the peak in figure 7(a) which corresponds to 
the second harmonic of the main oscillation is at a different frequency to that of the 
main oscillation in figure 7(h). The power spectra of the samples just before and after 
the reverse transition from R1 to Q2 show very similar results. Thus the time series 
sampled just before and after the transitions only show simply periodic behaviour, 
and there is no evidence for interaction between these solutions. The possibility 
that an interaction takes place over a very small range of parameters is of course a 
possibility but we believe this to be unlikely. Thus the experimental results suggest 
that any secondary Hopf branches which arise out of an interaction must be unstable 
and are hence not observed. 

occurs through a different mech- 
anism to the one described above. In figure 8, we present a graph of the frequency 
of oscillation against the Grashof number, which was produced in a similar way to 

The transition between the solutions Q2 and 
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FIGURE 8. Plot of frequency versus Grashof number for the exchange between the !& and !& 
oscillations. The overlap of the two branches indicates the presence of hysteresis in this interaction. 
Note that the lower branch shows a splitting which corresponds to the onset of a quasi-periodic 
flow through a secondary Hopf bifurcation. 

figure 6. If the system was started at the position labelled T in figure 3 in the i 2 3  
solution, the Grashof number then has to be reduced to a value below 62 000 before 
a sudden transition to the weakly modulated C12 state is found. Here, the Q2 solution 
consists of an oscillation with a period of 16 s. In addition, a modulation frequency 
is present on the signal and this changes in both frequency and amplitude as the 
Grashof number is varied. The onset and the development of this modulation will 
be discussed in more detail below. The modulation decays smoothly upon further 
reduction of the Grashof number until it is in the singly periodic R2 state at a Grashof 
number of 55  300. No hysteresis was observed in the onset of the modulation. In the 
reverse direction of increasing Grashof number, the system remains in the modulated 
Rz state for Grashof number up to and beyond a value of 68000, which is well 
inside the region of stability of the oscillation !&. The modulated signal consists 
of two frequencies at widely different time scales, which creates a double peak in 
the power spectrum at the mean frequency plus and minus half the lower frequency. 
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This spectral doublet is evident in figure 8 in the form of the splitting of the lower 
branch for Grashof numbers greater than 56000. The upper limit of stability of the 
modulated solution has not yet been found, and we have not observed the transition 
back to the solution C13. 

4. The onset of modulation via a degenerate Hopf bifurcation 
If the system is initialized in the C12 state along the path ST in figure 3, and the 

Grashof number is then increased beyond a value of 55000, a modulation of the 
periodic oscillation appears, as discussed above. The modulation has a long period 
when it first appears, at a Grashof number of 55 600 where the period is 216 s, and it 
decreases as the Grashof number is increased further. The period saturates at a value 
of 60 s once the Grashof number is increased beyond 60000. The frequency close 
to the bifurcation point is not constant, as was the case for the Hopf bifurcations 
discussed above, but it now varies by a factor of nearly four over an = 3% change in 
Grashof number. The amplitude of the modulation also varies close to the bifurcation 
point, so that the modulation starts with zero amplitude and increases in strength 
as the Grashof number is increased. Three detailed scans were performed along the 
line ST in parameter space in figure 3, one in the direction of increasing Grashof 
number, and the remaining two in the direction of decreasing Grashof number. The 
measurements suggest that no hysteresis is present, and hence the results from all 
three measurements are treated on an equal basis. We propose that this scenario 
could be due to a degenerate Hopf bifurcation. 

The period of the fast oscillation is 14 s, whereas the period of the slow oscillation 
has values up to 216 s. It was found that these greatly disparate time scales could 
not be separated satisfactorily using the spectral analysis, since the onset of the 
modulation was represented by the development of a large number of sidebands on 
the peak corresponding to the fast frequency. The power of the modulation frequency 
is hence distributed in many different peaks in the power spectrum. We found that 
representing the data in the form of the autocorrelation function was much more 
useful in practice. Hence this technique was used to determine the amplitude and 
frequency of the modulation close to the bifurcation in the following way. The 
time interval and amplitude of each of the maxima of the fast oscillation of the 
autocorrelation function was recorded. Another pass was then made through the 
recorded values of the maxima of the fast oscillation, to determine the maximum and 
minimum value of these. The difference between the maximum and the minimum of 
the maxima hence gives an estimate of the amplitude of the envelope, and the time 
interval between them gives a measure of the period of the modulation. 

The results of the analysis of the amplitude and the frequency of the modulation 
are displayed in figures 9(a) and 9(b) respectively. It may be seen that the amplitude 
rises steeply close to the bifurcation point and then saturates around 0.04. It is 
clear from the graph that the bifurcation point lies between the last zero value of the 
amplitude and the first non-zero modulation, i.e. between the Grashof numbers 54 700 
and 55 600. If we use the first two non-zero data points to make a linear extrapolation 
of the bifurcation point, we obtain a value of the critical Grashof number of 55 300. 
The frequency of the modulation is plotted in figure 9(b), as a function of Grashof 
number. A dotted line has been drawn at the critical Grashof number of 55 300. The 
results indicate that the bifurcation takes place at a point where the frequency has 
a small but non-zero frequency, of around 0.004 Hz. As the parameter is increased 
beyond the bifurcation, the frequency first grows in a fashion which is faster than 
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linear, then the growth becomes weaker, and the frequency finally saturates at a 
value of around 0.016 Hz. This observation of a dramatic change in the frequency 
of oscillation is in stark contrast with the more usual Hopf bifurcation, where the 
frequency is expected to be constant close to the bifurcation point. 

We now present an evaluation of the dynamics at fixed parameter values as the 
bifurcation is crossed. For each step, the dynamics of the system is displayed in the 
form of the time series and phase portrait, as shown in figures 10 to 13. 

The plots consist of a time series, reconstructed phase portrait and Poincare section 
obtained from the respective temperature measurements. In the time series plots, two 
consecutive sections of the sampled signal are displayed one on top of the other. Time 
runs along the x-axis, starting at the lower left corner, and progressing towards the 
right and up. The signals were all sampled at a frequency of 5 Hz. The phase portraits 
were reconstructed from the time series using the reconstruction technique based on 
discrete singular value decomposition, as proposed by Broomhead & King (1986) and 
by Broomhead & Jones (1989). The main feature of singular value decomposition 
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FIGURE 12. Time series, reconstructed phase portrait and Poincare map of the modulated 0 2  

oscillation at a Grashof number of 57 300. 
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FIGURE 13. Time series, reconstructed phase portrait and Poincare map of the modulated R2 
oscillation at Gr = 61 600. 
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is that it allows the extraction of the most significant modes of oscillation from a 
time series, and hence enables us to reconstruct a phase portrait in the three most 
significant dimensions of phase space. The three axes of the phase portrait hence 
correspond to the three most significant components of the signal. 

At a Grashof number of 54700, the system oscillates with a single frequency; a 
time series sequence of this behaviour is displayed in figure 10. The system evolves 
along a single closed loop in phase space as indicated in the corresponding phase 
portrait and its Poincare section. This fact confirms the presence of a single frequency, 
and there is no evidence for modulation of the signal. 

When the Grashof number is increased to 55 600, so that the secondary bifurcation 
point is passed, the time series develops a modulation which is shown in figure 11. 
The modulation is evidence that a second frequency of oscillation is present in the 
system. Moreover, the modulation is regular so that the flow is quasi-periodic. The 
corresponding phase portrait now has the form of a torus where the two winding 
directions correspond to the two frequencies and the filled in Poincare section provides 
evidence that they are not rationally related. 

At a Grashof number of 57 300, the frequency of the modulation has increased, as 
has its amplitude. The time series, phase portrait and Poincare section presented in 
figure 12 indicate that the modulation is now faster and stronger than at a Grashof 
number of 55600, and that the modulation is still regular. Further increase in the 
Grashof number results in a further increase in the frequency of modulation, until it 
finally saturates at a period of 60 s. The time series of the signal at a Grashof number 
of 61 600 together with the corresponding phase portrait and Poincare section are 
given in figure 13. The dynamics displayed in this sample is typical of that encountered 
in the remaining sets of samples at larger Grashof number along the scan in parameter 
space. 

In the case of a normal Hopf bifurcation a pair of complex-conjugate eigenvalues 
cross the imaginary axis, as discussed by Berg& et al. (1984) and by Guckenheimer & 
Holmes (1983). The imaginary parts of these eigenvalues correspond to the frequency 
of the oscillation, and in general will not depend strongly on the parameter close to 
the bifurcation point. In contrast to that, in the present case the frequency just after 
the bifurcation is very small, and grows as a function of the excess parameter. This 
behaviour more closely resembles the cases of low-frequency periodic bifurcations 
studied by Davis & Rosenblat (1977), who investigated model systems of differential 
equations with square root or linear growth of the frequency as a function of the 
parameter. The occurrence of this special type of periodic bifurcation may be due 
to Hopf-Hopf interactions taking place at the codimension-2 point where the line of 
Hopf bifurcations for the oscillation Q2 intersects that of Q3. Such codimension-2 
points are organizing centres for the dynamics in parameter space, and can give rise 
to a rich range of phenomena, as discussed by Golubitsky & Langford (1981), van 
Gils, Krupa & Langford (1990) and Mullin (1993). 

5 .  Conclusions 
The study of free convection in molten gallium is of widespread interest both 

because of its scientific importance and also its practical value as a prototype model 
of the Bridgman crystal growing technique. We have carried out a systematic 
experimental study of some interesting time-dependent phenomena in this flow using 
a novel approach of varying both the Grashof and Prandtl numbers. This has 
uncovered the surprising result that the qualitative nature of the dynamics can change 
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with Prandtl number. Each oscillatory state bifurcates through a Hopf bifurcation 
from the same steady state but the set of bifurcations does not show a smooth 
dependence on the control parameters. 

The interaction between the different types of oscillatory motion can lead to abrupt 
changes in the dynamical motion as the control parameters are change smoothly. 
More interestingly perhaps is that another type of interaction has been uncovered 
which proceeds through a degenerate Hopf bifurcation where both the amplitude 
and frequency go to zero at the critical point. The roots of the latter phenomenon 
lie in a codimension-2 point. Such points are known from previous studies of fluid 
mechanical phenomena to form organizing centres for global dynamical motion and 
hold the key to a deeper understanding of more complicated behaviour including 
chaos. 
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construction of the experimental apparatus, to Dr A. C. Skeldon, for useful discussion 
on numerical calculations for the present problem, and to Drs D. S. Broomhead and 
D. T. J. Hurle for their helpful suggestions and discussions. M.G.B. was supported by 
a studentship from the Defence Research Agency at Great Malvern, UK. 
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